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Al~tract--The effect of a layer of an adsorbed surfactant monomolecular film of fluid which covers the 
surface of a large volume of a different substrate fluid is considered with respect to the fluid motion caused 
by the slow rotation of a submerged sphere. For a semi-infinite substrate, the boundary value problem 
posed with the surfactant boundary condition of Scriven and Goodrich is solved exactly for any depth of 
the submerged sphere. Comprehensive numerical calculations are given for the torque and surface velocity 
for various values of the parameters defining the depth of the sphere and the surface shear viscosity. 
Asymptotic expressions for the solution are given for the cases of a deeply submerged sphere or when the 
substrate has a finite depth. The relevance of the work to providing an experimental technique for 
measuring surface shear viscosity is also considered. 

1. INTRODUCTION 
A significant problem of interest in surface chemistry is the effect of an adsorbed surfactant 
monomolecular film of fluid which covers the surface of a large volume of different fluid--the 

substrate--and a body moving near to or at the surfactant layer. The presence of the surfactant 
layer results in the existence of a coefficient of surface shear viscosity x and the appropriate 

boundary conditions to apply at the surface, r¢flecting the effect of the surfactant layer, can be 

derived from the work of Scriven (1%0), who studied the motion of a thin fluid interface 

between two bulk fluids of different viscosities. 
Theoretical and experimental work to measure the coefficient x has been carried out by 

Goodrich et  ai. (1%9, 1970, 1971). They examined the dynamics of a viscometer for measuring K 

which consisted of a thin circular disc inserted into the plane interface between the surfactant 

film and the underlying substrate. The disc was rotated slowly and the torque required to 
maintain the steady motion was measured. From a knowledge of this measured torque together 

with an analytical formula relating the torque to the shear viscosity, the value of x could 

accordingly be deduced. Goodrich's theoretical analysis assumes that the Reynolds numbers for 

the motions of both the surfacant and substrate are sufficiently small for the linearized Stokes 
equations to apply. The only non-vanishing component of the fluid velocity v is in the azimuthal 

direction, and a somewhat unusual mixed boundary value problem results for Iv[ due to the 
boundary condition to be satisfied at the surface expressing the balance of substrate stresses on 

the adsorbed film and the internal film stresses. Taking (#, 0, z) to be cylindrical polar 
coordinates with the z-axis drawn into the substrate and the plane z = 0 within the interface 

between the surfactant layer and the substrate, this boundary condition takes the form 

Ov dZv ^ 

where v = Ivl and #,x denote respectively the coefficient of internal viscosity of the substrate 
and surface shear viscosity of the adsorbed film. 

The mathematical analysis of Goodrich is not entirely satisfactory, and its shortcomings are 
discussed in detail by Shaft (1978) who has produced a simpler form of solution using the 
methods of Generalised Axially Symmetric Potential Theory to formulate an integral equation 
problem for v. Furthermore, Shaft's analysis, besides providing a complete set of numerical data 
for the torque when it = K/# takes general values, gives a comprehensive view of the 
asymptotic structure of the solution for very large and very small values of it. 
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The great difficulty encountered in using a rotating disc within a surfactant layer to make 
measurements of the torque is that of precise positioning of the disc within the layer of 

adsorbed film. The results of the theoretical work also indicate that this is not a particularly 
sensitive method for measuring small coefficients of shear viscosity, which magnifies the errors 

associated with positioning of the disc and casts further doubts on the ability of this type of 
measurement. This has led the authors in this paper, together with Shail (1979) in a companion 
paper, to propose an alternative approach to the measurement of K. By removing the measuring 

device from actually within the surfactant layer, the difficulty referred to above can be 
conveniently overcome. Shail has proposed a measuring device based on a rotating disc which 
is placed in the substrate fluid below the surfactant layer. 

In this paper, we propose using a sphere, again suspended in the substrate below the 
surfactant layer, which rotates slowly about a diameter perpendicular to the plane of the 
surfactant layer. We feel that the choice of a spherical body is particularly advantageous for 
this type of experiment in which extremely accurate measurements must be made in order to 
arrive at a reliable value of K. All physical parameters can be closely monitored and the 
inherent disadvantage of a real disc having thickness, unlike a mathematical disc, does not 
arise, thus excluding a further source of error. Furthermore, this geometry ensures that an 
exact mathematical solution of the boundary value problem can be found for all depths of the 
sphere below the surfactant layer, even when the sphere approaches tangency with the layer. 
We have calculated the values of the torque acting on the sphere for a wide range of values of 
the depth of the sphere for values of A extending from zero to infinity. The limiting cases ,~ = 0, 
when the shear viscosity is zero and the surfactant layer becomes a simple stress free surface, 
and A = 2, when the shear viscosity is infinite corresponding to a solid plane boundary, are also 
considered. We also give a comprehensive asymptotic analysis of the form of the velocity and 
torque when .~/h ~ 1 and ;t/h >> 1, where h is the depth of the sphere centre below the surfactant 
layer, for a substrate of infinite depth. The effect of a substrate of finite depth is also 
considered. An alternative experimental procedure to measuring the torque acting on the sphere 
would be to measure the surface velocity of the surfactant which is induced by the rotation of 

the sphere. This can be conveniently achieved by depositing marker particles on the surface 
and measuring their velocities. We have therefore given numerical data which predicts what the 
surface velocity distribution would be for varying depths of the sphere and the viscosity ratio 

parameter ,L 

2. S P H E R E  ROTATING BELOW THE S U R F A C T A N T  LAYER 

A rigid sphere of radius a rotates in a semi-infinite incompressible fluid with dynamic 
viscosity ~. The axis of rotation is the diameter of the sphere perpendicular to the upper 
bounding surface of the fluid on which there is a layer of an adsorbed surfactant monomolecu- 
lar film possessing surface viscosity r. The depth of the centre of the sphere below this 
surfactant layer is h and the sphere rotates with constant angular velocity ~. 

We shall assume that the Reynolds number for the flow induced in both the surfactant layer 
and the substrate fluid is sufficiently small to permit the neglect of inertia terms in the 
Navier-Stokes equations. Consequently, the equations governing the flow are 

Vp =/zV2v, V. v = 0, [2.1] 

where v and p are respectively the velocity and pressure of the fluid. 
The fluid motion is caused solely by the rotation of the sphere, and because of the axially 

symmetric nature of the problem, it seems reasonable to suppose that the velocity v has only 
one component which is in the azimuthal 0 direction of a system of cylindrical polar 
coordinates (p, O, z) with the z-axis along the axis of rotation of the sphere and pointing into the 
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substrate fluid. The plane z =0  coincides with that of the surfactant layer. Accordingly, 
[2.1] possess a solution of the form 

v = v(p, z)O, p = O, [2.2] 

provided that 

pdp--~ ~Z2) v=O" [2.3] 

The boundary condition on the sphere requires that 

v = O,p, [2.4] 

for points (p, 0, z) on the sphere, and following the work of Striven (1960), the boundary 
condition at the surfactant layer, which expresses the balance of substrate stresses on the 
adsorbed film and the inertial film stresses, takes the form 

dv .02v  
0z A-~ " r = 0 ° n z  =0'  [2.51 

where A = d# .  A further kinematic condition requires that v -~0 at an infinite distance from the 
sphere. 

In seeking a solution to the boundary value problem for v posed above for general depths h 
of the sphere centre below the surfactant layer, it is advantageous to work with bispherical 
coordinates ((, 1,/) which are related to the cylindrical polar coordinates (p, z) by the relations 

c sin 7/ , z = c sinh ~ [2.6] 
P = cosh ~ -  cos ~1 cosh ( - cos 7/' 

where c is a constant which has the dimension of length. The plane z = 0 corresponds to ~: = 0 
and the sphere is defined by ( = a, where a = c cosech a and h = c coth a. Accordingly, for a 
given choice of a and h, the parameters c and a are uniquely determined. The part of the fluid 
infinitely far away from the sphere corresponds to ~, ~/-->0. 

The general form of solution to [2.3] in essentially separated bispherical variables ~, ~1 was 
worked out by Jeffrey (1915). The appropriate form of solution for our purposes is therefore 

c¢ 

v = [lc(cosh ~: - cos rl)l12~,{A,, cosh(n + i2)~: + B, sinh(n + 21)~ :} P,l(cos r/) 
n=l  

[2.7] 

where P,l(cos 7/) is the associated Legendre function of the first kind and with order n and 
degree unity. By making use of the expansion 

(cosh ~:-cos 77) -112 = X/2~ e-~"+l/2~lP,(cos 7) 
n=0 

[2.81 

given for instance by Morse & Feshbach (1956), it is easy to show that the condition [2.4] on the 
sphere is satisfied if 

B. + k.A.  = 2~/2(k. - 1), (n/> 1) [2.9] 

where k. = coth(n + ~)a. 
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With the velocity given by [2.7], it can at once be shown that 

O_vv = _ ½1)(cosh s ¢ - cos rl)l/2'~ {[(n + 2)A,÷I - (2n + I)A, + (n - 1)A,_l]sinh(n + ½)s ¢ 
0Z .=l 

+ [(n + 2)B,+I - (2n + 1)B, + (n - 1)B,_i]cosh(n + lz)sc}P,i(cos rl). 

Accordingly the surfactant boundary condition [2.5] is satisfied if 

(n + 2)(,~C,+~ + 2B.+0 - (2n + I)(AC, + 2B.) + (n - I)(AC,_I + 2B, i) = 0, 

where ,~= a/c and 

C, = (n + 2)A,+I - (2n + 1)A, + (n - I)A,_~ 

It therefore follows that for all values of n/> 1, 

,~C, + 2/3, = constant. 

To determine this constant, we note that 

and since 

(n ~> 1). 

(v)z=0 = (v)e=o = f~c(1 - c o s  rl)l/2~] A.p,I(cos ~/), 
n = l  

• P,~(cos  77) = 2X/2 sin n(1 - cos  ~)-3/2,  
n = l  

[2.10] 

(n t> l )  [2.11] 

I2.12] 

[2.131 

7". 
A1 = -lim--;7. [2.16] 

n~Un 

In our numerical calculations, we used as our criterion for the truncation of the sequences {U,} 
and {T,} the condition that the difference between the values taken by 7",/U, in two successive 

A,=T,+AIU, (n ~> 1). [2.15] 

Thus since A, ~ 0 as n ~ ~, 

From [2.14], all coefficients A, can be determined once A1 is known. To find this coefficient, the 

difference equation may be solved in the following way. We let {7",} denote the solution of 
[2.14] with TI =0 ,  and {U.} denote the solution of the homogeneous difference equation 
obtained by setting the r.h.s, of [2.14] equal to zero and setting U~ = 1. The complete solution of 

[2.14] will then be given by 

( n ~  > 1). [2.14] 

A{(n + 2)A.+l - (2n + I)A, + (n - 1)A,_I} - 2k, A, = 4~/2(I - k,), 

it follows that if A. ~ a  non-zero constant as n ~ ,  then (v)e=o = 0(W l) as ~ ~ 0 .  Consequently 

we require that A. ~ 0  as n ~ in order to eliminate this singularity. This means that B,, C, -~0 
as n ~ and the constant appearing in [2.13] is zero. Combining I2.9] and [2.13] we obtain 
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evaluations must be less than l0 -15. This ensures that there is a set of values of {An} known to a 
high degree of accuracy which is essential for calculating the torque acting on the sphere. 

Although for general values of A, the difference equation [2.14] has to be solved numerically, 
the solution can be readily found in closed form for the limiting cases when A -~0 and ;t --,oo. 
When A ~ 0, the solution is 

An = 2X/2{1 - t anh(n  +½)a}, Bn --- 0 (n I> 1). [2.17] 

In this limit the boundary condition on z = 0 reduces to Oddz = 0 which is the appropriate 
boundary condition at a simple stress free surface. This solution is also identical to that for two 
equal sized spheres rotating with equal angular velocities in an infinite fluid. When A ~ ~, the 
solution is then 

An = 0, Bn = 2X/2{coth (n +½)a - 1}, (n 1> 1). [2.18] 

Now the boundary condition on z = 0 reduces to 32v/cgz 2= O, which, by virtue of [2.3] together 
with the condition of zero velocity at infinity and at the origin, leads to the equivalent condition 
that v vanishes on z = 0. Consequently this solution is identical to that for a sphere rotating in a 
semi-infinite fluid bounded by a rigid plane wall. The solutions to both of these limiting 
problems were first given by Jeffery (1915). 

3. THE TORQUE ACTING ON THE SPHERE 

As the sphere rotates, the torque which the fluid exerts on the sphere to resist its motion is 
T = - Tk where 

where the path of integration 3' is a meridional section of the sphere and c9/c9n denotes 
differentiation along the direction of the normal to the sphere drawn into the fluid. On 
substituting for v from [2.7] and expressing the other terms in bispherical coordinates, we 
obtain the expression 

T = 2~r/.tflc3{2 a sinh ~ '  . . . . .  f "  sin2r/Pnl(c°s "q) j 
O/n~_- I wn(a)J0 (cosh a - c o s  '0) 5/2017 

. . . . . .  ( "  sin 2 r/p~l(cos r/) j ] + 
n=l WnI'O'JJ 0 (cosh a - cos r/j3/2ur/~ [3.2] 

where W~(a) = An cosh(n + 2X)a + B~ sinh(n + I2)a. By using the relations 

oo 

sin n n)3/, = 2X/2~e-tn+l/2)~P~t(cos rl) 
(cosh a - cos n=t 

sin,/  _ 2X/2 ® 
(cosh a - cos r/) 5t2 - 3 sinh a~,=1(2 n x "  

+ 1)e-(n+ll2)a pnl(cos ~l), 

together with the orthogonality relation for the Legendre functions, it follows that 

0o 

T = 4V'27r#Ila 3 sinh 3 a ~,  n(n + 1)[An + Bn]. [3.3] 
n = l  
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On defining a dimensionless torque coefficient r as T/87rtzl'~a 3 and substituting for B, we find 
that 

r = ~ sinh 3 a ~,  n(n + 1)(2V'2 - A,)[coth (n + ,~)a - I]. [3.4] 
V / Z  n =  I 

A further simplification can be obtained by noting that 

= = 1  ~ ~ , n ( n  + 1)[coth(n + ½ ) a -  1] 2~cosech3na.  [3.5] 
n = l  n = l  

Consequently [3.4] can be written as 

r = sinh 3 a ~ c o s e c h  3 na - sinh 3 a ~ n(n + 1)A.[coth(n + ~)a - II. [3.61 
n = l  n = l  

For the case when A ~ 0 ,  [3.6] reduces to 

~- = s i n h 3 a ~ ( - 1 )  n÷l cosech 3 na. [3.7] 
n = l  

When a ~ ~, the sphere is then at an infinite distance from the free surface and we obtain the 

expected limit r ~  I. As a ~ 0 ,  the sphere approaches tangency with the free surface and we 
now obtain 

- ,  = 0 . 9 0 1 5 4 3  
e l= |  Ig 

where ~'(x) denotes the Riemann zeta function. For the case when ,~ ~ ,  we find that in this 
limit, 

oo 

z = sinh3a '~'~cosech 3 na. [3.8] 
n = l  

When a ~ ~, we again see that z ~ 1, but when a ~ 0, 

r ~ ~'(3) = 1.20206. 

4. D E E P L Y  S U B M E R G E D  S P H E R E  

When h >> a, a simple solution, valid for all values of A, can be obtained by the method of 
matched asymptotic expansions. Near the sphere, in the "inner region", the solution for the 
velocity v is essentially unaffected by the presence of the surfactant layer at z = 0. Thus v must 
satisfy [2.3] and [2.4] together with the vanishing condition at infinity. Hence, to leading order, 

l ip  [4.1 ] 
v ~ [(z - h) 2 + p213/2. 

However  in the "outer region", the effect of the sphere on the solution is that of a point 
singularity. Now the velocity V must satisfy [2.3], [2.5], the vanishing condition at infinity and 
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in addition, a singularity condition derived from [4.1]. Since h is the appropriate length scale for 
the outer region, we write 

and [2.5] and [4.1] yield 

t5 = dh, ~. = z/h, [4.2] 

OV ~ O2V 
--7 = -  (~=0), [4.3] 
Oz h 0~ 2 

V- lip 
h2[(~ _ 1)2 +/~213/2 + regular function, [4.4] 

[4.8] 

and in order that condition [2.4] is not violated, the inner region solution must be given by 

tip li / p 
v-[(z_h,2+p2]3/2+'~3tl-3-~)[p-[(z - h,2+ p2]m ]. [4.9] 

Expressions [4.7] and [4.9] apply when A ,~ h. For the more practically useful situation when 
,~ >> h, a more suitable form for V, obtained by rearranging [4.5], is given by 

21) r=ke -ku+l) 
v -  ~h-~[(~- 1)2 +,~21-3~2- [(~ + 1)~ + ~21-3~'} +TJ  ° x-T~.I , (k~k. [4.1o1 

v - lip{[(z - h) z + p2]-312 + [(z + h) 2 + pe]-3/z} 

f=s2e-S(h+z) 
-2,~aJo ~ ¥-i- 41(sp)ds 

fl li ® 
~ [(z-h)~P+ p213/2+~h- h-liPfo s3e-2"hds 

lip + l i o /  3A\ 
=[(z_h)2+p213t2 ~r~[l-'-~), 

as (p, z)~(O, 1). It can then be readily shown that for [2.3] and the condition at infinity to be 
satisfied, V must to leading order be given by 

^ ,)]tO faob2~-k(l+£ ) 

1 2+ 2]-3'2 -VJ0 h J,(k )dk. i451 

In particular, on the surface ~ = O, the velocity is 

--~(1 + ~2)-3/2 _ 2All f= k2e -k . . . . . . . .  2~p ®s2e -sh 
h 2 Jo A-'k-"+h "~z~p~u~ =(h2+p2)3/2-2Alif0 A----s--s--s--s~l Jl(sp)ds [4.6] V 

where s = k/h. After using Watson's lemma and the fact that J~(x)~ Ix as x-->0, [4.6] gives 

2l ip 3ph 2l ip 
V-(h2+ 02)3,2-2Ali{(h2 + p2),,2 + 0(A)} ---h-y-(1 - ~ ) ,  [4.7] 

when p/h ~ 1. In addition, [4.5] can be used to improve the "inner solution" given by [4.1]. 
Expression [4.5] shows that the far field behaviour of v must be of the form 
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The first two terms are the solution in the limit A ~ ,  where the condition 02V/a~ 2 = 0 on 2 = 0 
with V bounded for all t~ implies that V = 0 on 2 = 0. In particular the velocity on the surface 

= 0 is given by 

v-20fo~J,(so)ds 
which can be shown to be 

2~Afo~e_shJl(sp)ds = 2 1 ] p _ [ ~  + h ' A(h2+ p2)[ ' (h2+p2)l/2] " [4.11] 

The far field behaviour of the inner solution v must be of the form 

f/p v ~  
[(2' - h) 2 + p213/2 

~p  
[(z - h) 2 + p213/2 

~ ~ = s 2 e  - 2 s h  . 

8h 3 + llPJo A-~s--s-~ ds 

2h h E 
~ [ 1 - - ~ + O ( - ~ t  J" [4.12] 

It therefore follows that 

v D , p  p [(z_h)2+p213;2 ~ h 3 ( l - - ~ - ) [ p  [(z_h~+p213,2] [4.13] 

The torque exerted on the sphere by the fluid is given by 

4 = o3 V 
T=-27riza fo [-b-R(p)]R=, sin3 0d0 ,  [4.14] 

where p~ is the viscosity and p = R sin O, z - h = R cos O. On substituting [4.9], it readily follows 

that 

t  }f0 T = 6¢r/z~a 3 1 - + sin 3 0 dO 

=87r/z~a3J" 1 a 3 ( .  3A\ )  
t 

[4.15] 

It will be noticed that [4.7] and [4.15] are valid for all values of A such that A/h ~ 1, so that A 
itself need not be small if the depth of the sphere is large. The correction term in [4.15] is 
closely related to the velocity distribution of [4.7]. The corresponding value of the torque when 
A ~> h ,> a is, on using [4.13], given by 

T = 8 7r~l-la3{ 1 + 8--~3(1 - - ~ )  } . [4.16] 

5. SUBSTRATE OF FINITE DEPTH 

In this section, we consider the effect on the velocity and torque when the substrate fluid 
has a finite depth H, where H[a -> 1. We shall also suppose that h/a ~> 1 and (H - h)/a -> 1. In 
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constructing the solution for the outer region velocity V, we need to modify the Green's 
function so as to take into account the condition that the velocity vanishes on the rigid 
boundary z = H, which, in terms of the stretched variables defined by [4.2], is given by ~ = 3' 
where 3' = H/h. Accordingly the asymptotic form of the outer region velocity is given by 

•h-•2 __~ { [ ( z - 2 m y -  V ~ 1) 2 + ~12] -3/2 - [(~ - 2my + 1) 5 + t~21-3/2} 
m 

2fl (~k sinh k(3' - 1) sinh k(y - ~)Jl(kfg)dk 
h~Jo [cosh k3" + (Ak/h) sinh ky] sinh ky " 

[5.1] 

This form of expression is most suitable when A >> h and, as in [4.13], the integral vanishes in 
the limit ;t-->~, so the torque is therefore given asymptotically by 

T~87r#Oa3{ 1 ((3)a3±1 ~, a 3 a f= f s i n h s ( H -  
--4"HV'Sr,_~__~lm~--hl3 ~JoS[  si~-~-~-h)]2ds} • [5.21 

The corresponding expressions for A .~ h, are given by 

V ~  (-1)"{[(~-2my-1)2+p2]-3/2+[(~-2my+l)2+~]-3/2} 
r ,  m = - ~  

2Afla 2 ['~k 2 sinh k(y - 1) sinh k(y - ~)J~(k~)~. 
[5.3] 

and 

o ~, 3f--3~(3) a3 I ~ ( - 1 )  m a 3 - A r  ~ 3 [ s inhs (H-  
, rr3 -- jo s t j ds l l i T ~ o r # s t a  [5.4] 

If H >> h, then [5.2] becomes 

T - 8~'/x~a3{ 1 + 8~h3 (1 - ~ - )  }, 

which is the same as [4.16]. However [5.4] becomes 

T-8~rt zlla3~'[ a3 {, 3A'~.,_3~'(3)a3"[ 
• - 8--~ ~," - - h - J  " ~ J  

which reduces to [4.15] in the limit when H/a-->oo. 

6. R E S U L T S  O F  T H E  N U M E R I C A L  W O R K  

We have solved the difference equation [2.14] for a large set of values of ,~ in the range 
0.1 <~ ,~ ~< 100. The method employed has been described in detail in section 2 and it proved to 
be a particularly simple method requiring very little computer time in order to achieve very 
great accuracy as is needed in order to calculate the torque and surface velocity distribution. In 
our calculations, the criterion which we used to truncate the solution sequence {A,} was the 
stabilization of the ratio Td U, so that in two successive evaluations with increasing n, this ratio 
did not change by more than 10 -I~. The numerical method allows the solution of [2.14] to be 
found with facility for all values of the sphere depth parameter. We found that the number of 
effectively non-zero terms in the sequence {A,} for any given a increases with ,(, and for any 
given A, increases as a decreases. For each value of ,~ considered, we carried out our 
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Table I. 

£=0.2  £=0 .4  £=0 .6  
a h/a r rlro r rtro r rtro 

2.0 3.7622 0.9986 1 . 0 0 1 0  0.9992 1 . 0 0 1 6  1 . 0 0 0 0  1.0020 
1.0 1 .5431  0.9786 1 . 0 1 1 5  0.9862 1 . 0 1 9 3  0.9917 1.0250 
0,5 1 .1276  0 . 9 4 0 1  1 . 0 1 6 2  0.9524 1.02% 0.%28 1.0409 
0.2 1 .0201  0.9134 1 . 0 0 8 6  0.9207 1 . 0 1 6 6  0.9269 1.0235 
0.I 1 . 0 0 5 0  0.9064 1 . 0 0 4 2  0.9098 1 . 0 0 8 0  0.9110 1.0093 

£ = 2.0 £ = 4.0 a = 6.0 
2.0 3,7622 1 . 0 0 0 9  1 . 0 0 3 3  1 . 0 0 1 5  1 . 0 0 3 8  1.0017 1.0041 
1.0 1 .5431  1 . 0 1 0 2  1 , 0 4 4 1  1 . 0 1 9 4  1 . 0 5 3 6  1 . 0 2 3 6  1.0580 
0.5 1 . 1 2 7 6  1 . 0 0 7 2  1 . 0 8 8 8  1.0362 1.1201 1.0516 1,1369 
0.2 1 .0201  0.%53 1 . 0 6 5 8  1 . 0 0 1 5  1 . 1 0 5 8  1 . 0 2 6 4  1,1333 
0,1 1 . 0 0 5 0  0.9375 1 . 0 3 8 7  0.9642 1 . 0 6 8 3  0.9853 1,0916 

/~ = I0.0 ,~ = 40.0 a = 100.0 
2.0 3.7622 1 . 0 0 1 9  1 . 0 0 4 3  1 . 0 0 2 2  1 . 0 0 4 6  1 . 0 0 2 3  1.0047 
1.0 1.5431 1.0277 1 . 0 6 2 2  1 . 0 3 3 4  1.0681 1.0348 1.0695 
0.5 1 . 1 2 7 6  1 . 0 6 8 0  1 . 1 5 6 6  1 . 0 9 3 9  1 . 1 8 2 6  1 . 1 0 0 7  1.1900 
0.2 1 .0201  1 . 0 5 8 6  1 . 1 6 8 9  1 . 1 2 8 0  t.2455 1 . 1 5 1 5  1.2715 
0.1 1 . 0 0 5 0  1 . 0 1 6 9  1 . 1 2 6 6  1 . 1 0 8 2  1 . 2 2 7 9  1 . 1 5 0 0  1.2742 

calculations for values of a in the range 5 .0> a > 0.1. The extreme values of this range 
correspond to h/a = 74.2099 and 1.0050 respectively, giving a very broad spectrum of values of 
h/a. The largest number of terms of {An} which had to be calculated was 709 in order to meet 
the stated truncation criterion. This was for the case a = 100, a = 0.1, while on the other hand, 
for a = 0.1, no more than 13 terms had to be calculated for any value of a. For any value of a, it 
was found that the torque r acting on the sphere is insenstiive to the presence of the surfactant 
until a ~ 2.0, corresponding to h/a ~- 3.76. If a is decreased to 0.1, then the torque decreases 
monotonically from 1.0, its value when h/a- ,% provided that A <Ao where £o~0.775. For 
values of ,( exceeding this critical value, decreasing a results in an increase in r from 1.0 to a 
maximum and then a decrease to its least value as a ~ 0 .  The value of a at which the maximum 
occurs depends on £ in such a way that it decreases as £ increases. This behaviour is illustrated 
in table 1 where we have listed both the torque r and the ratio r/ro, where ro denotes the value 
of the torque for that particular sphere depth when K = 0 and the surfactant layer degenerates 
into a simple stress free surface. This latter quantity provides a good measure of the strength of 
the surfactant in influencing the motion of the substrate. Clearly for any given value of a and ,(, 
we have 1 < r/ro < r~/ro, where r~ denotes the value of r for that choice of ~ when ,( = ~. In 
table 2, we have displayed the values of r0, r~ and roJro for various values of c~, using the 
formulae given by [3.7] and [3.8]. 

In figure 1, we have plotted the graphs of r/ro as a function of h/a for £ = 0.2, 0.4, 0.6, 4.0, 
6.0 and ,~ = ~. 

The surface velocity is given by [2.7] when we set s r = 0. We therefore have the expression 

v/~a = sinh a(1 - cos ~)1/2~ AnPfl(cos 7). 
n = l  

[6.1] 

Table 2. 

h/a ro r= r~/ro 

2.0 3.7622 0.9977 1 . 0 0 2 4  1.0047 
1.0 1 .5431  0.%75 1 . 0 3 5 7  1.0705 
0.5 1 .1276  0.9250 1 . 1 0 5 6  1.1952 
0.2 1 .0201  0.9056 1 . 1 7 0 9  1.2930 
0. I 1 . 0 0 5 0  0.9026 1 . 1 9 1 0  1.3195 
0.0 1 . 0 0 0 0  0.9015 1 . 2 0 2 1  1.3333 



THE SLOW ROTATION OF A SPHERE SUBMERGED IN A FLUID 423 

1.4 

1.3 

1.2 

X= 

X ' 2  

X-0.6 

1.0 ~ 
1.0 1.2 1.4 1.6 1.8 

h /o  

Figure 1. Graphs of r/~'o plotted vs h/a for various fixed values of A-. 

The radial distance on the surface can be obtained from [2.6] with ~: = 0. This gives 

p/a = sinh a cot ½ n. [6.2] 

In table 3 we display values of the dimensionless surface velocity for various values of the 
parameters ,~, a and p[a. The values selected for A were 0.2, 0.6, 1.0, 2.0, 6.0 and 10.0 and the 
values of a chosen were 0.5, 0.3 and 0.1 which correspond to values of h/a = 1.1276, 1.0453 and 
1.0050 respectively. In figure 2, we have plotted graphs of d t la  vs p/a for a = 0.5. 

Measurement of the surface velocity is clearly an alternative experimental procedure to the 
measurement of the torque. When the parameter A is small, the torque is then less sensitive to 
the presence of the surfactant than in the case when A is large. However when A is small, the 
variation in the surface velocity is larger than when A is large. Thus we might expect that either 
measurement technique has its use depending on the size of the surface shear viscosity of the 
adsorbed film. 

In conclusion, we would like to point out that the problem studied in this paper is one which 
has an exact mathematical solution from which those physical quantities such as torque and 
surface velocity can be calculated as accurately as we please for any depth of the sphere below 
the surface of the adsorbed film. The choice of a sphere as the rotating body is also 
advantageous in that it is a shape which can be manufactured quite easily with great precision, 
thus both the geometrical parameters of sphere radius and depth can be accurately measured 
and controlled. Only these two geometrical parameters are required for evaluating the exact 
mathematical solution for a given value of A. 
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Figure 2. Graphs  of villa plotted vs p/a for a = 0.5, corresponding to h/a = 1.1276. 
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Table 3. 

a = 0.5, h/a = 1.276 villa 
cos r/ p/a ,~ = 0.2 A = 0.6 £ = 1.0 A = 6.0 ,( = 10.0 

- 1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.8 0.1737 0.1512 0.1257 0.1094 0.0399 0.0268 
-0.6 0.2605 £ . 2 2 0 5  0.1827 0.1560 0.0580 0.0390 
-0.4 0.3411 0.2785 0.2300 0.1980 0.0730 0.0491 
-0.2 0.4255 0.3309 0.2727 0.2326 0.0868 0.0584 

0.0 0.5211 0.3790 0.3119 0.2667 0.0998 0.0673 
0.2 0.6382 0.4209 0.3469 0.2975 0 . 1 1 2 1  0.0758 
0.4 0.7960 0 . 4 5 0 1  0.3733 0.3203 0.1232 0.0836 
0.6 1.0422 0.4488 0.3786 0.3292 0.1308 0.0893 
0.8 1.5633 0.3644 0.3208 0.2858 0.1249 0.0869 
0.9 2.2714 0.2443 0.2255 0.2085 0 . 1 0 3 1  0.0737 

a = 0.3, h/a = 1.0453 
-1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.8 0.1015 0.1004 0.0955 0.08% 0.0467 0.0337 
-0.6 0.1523 0.1499 0.1419 0.1327 0.0688 0.0495 
-0.4 0.1994 0.1950 0.1834 0.1710 0.0879 0.0633 
-0.2 0.2486 0.2409 0.2249 0.2088 0.1064 0.0765 

0.0 0.3045 0.2905 0.2688 0.2485 0.1254 0.0901 
0.2 0.3730 0.3464 0.3173 0.2919 0.1456 0,1046 
0.4 0.4652 0.4110 0.3723 0.3405 0.1680 0.1206 
0.6 0.6090 0.4823 0.4325 0.3935 0.1926 0.1383 
0.8 0.9136 0.5236 0.4704 0.4288 0.2135 0.1543 
0.9 1.3274 0.4524 0.4158 0.3849 0.2043 0.1499 

a = 0. I, h/a = 1.005 
- 1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.8 0.0334 0.0437 0.0334 0.0334 0.0308 0.0277 
-0.6 0.0501 0 . 0 5 5 1  0.0502 0.0500 0 . 0 4 6 1  0.0413 
-0.4 0.0656 0.0700 0.0657 0.0655 0.0600 0.0536 
-0.2 0.0818 0 . 0 8 9 1  0.0818 0.0817 0.0743 0.0662 

0.0 0.1002 0.1074 0.1002 1 . 0 0 0 0  0.0902 0.0801 
0.2 0.1227 0.1259 0.1226 1 . 2 2 3 6  1 . 0 9 1 9  0,0%5 
0.4 0.1530 0.1527 0.1528 1 . 5 2 3 3  1 . 3 3 7 1  1,1736 
0.6 0.2003 0.2005 0.1997 1 . 9 8 4 7  1 . 6 9 5 3  1,4731 
0.8 0.3005 0.3084 0.2954 2.9150 2.3520 2,0070 
0.9 0.4366 0.4239 0.4096 3.9917 3.0264 2,5387 
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